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Abstract

We consider a queueing system with Poisson arrivals and arbitrarily
distributed service times, vacation times, start up and close down times.
The model accepts two types of customers, the ordinary and the retrial
customers and the server takes a single vacation each time he becomes free.
For such a model the stability conditions are investigated and the system
state probabilities are obtained both in a transient and in a steady state
and used to derive some important measures of the system performance.
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1 Introduction

Queueing models with vacation periods and start up/close down times have
been proved very useful to model telecommunication systems and many other
queueing situations containing "mechanical parts” that need a "preparation”
(start up) before use and a switch off-maintenance period after use (computer
systems, manufacturing systems e.t.c.). Applications of such kind of queueing
models in SVC - based virtual LAN- emulation and in IP over ATM networks
have been described in details in Sakai et al. [1], Niu & Takahashi [2] and in
the references therein.

In all models, described and investigated above, the arriving ”customers ”
are queued up and wait to be served. On the other hand, it is easy to realize
that such kind of real situations accept, in many cases, and a second kind of
”customers” that do not wait in a queue but instead, if they find upon arrival
the server unavailable, they depart from the system and repeat their arrival
later until succeed to be served. As a simple example of such a situation one
can consider an X-ray unit or a tomographic unit, where the machine needs
a special time to start working and to close down where there are no more



patients waiting, while external phone calls of patients that ask for the results
of their examinations or ask for medical advice, arrive and engage the ”server
. Queueing systems with retrial customers are widely used in the literature to
model telephone switching systems, telecommunication systems and computer
networks. For a complete survey on past papers on such kind of models see
Falin & Templeton [3], Kulkarni & Liang [4] and Artalejo [5].

In this paper, the two important features, i.e., the start up/close down fea-
ture and the retrial feature are combined together, for the first time in the liter-
ature. Thus here we study for the first time a queueing model of vacation-start
up/close down nature accepting two types of customers, the ordinary customers
that are queued up and wait for service and the retrial customers. The server
needs a start up time before starts working on customers (different start up for
each type of customers), a close down period upon finishing the job, and when
he is free he departs for a single vacation. Moreover the ordinary customers
have a kind of priority upon retrial customers, in the sense that the arrival of an
ordinary customer interrupts the start up time of the retrial customer (if any),
and the server starts to be prepared to serve the ordinary customer.

The article is organized as follows. A full description of the model and
some, very useful for the analysis, preliminary results are given in section 2 and
3 respectively. The time dependent analysis of the system state probabilities
is performed in section 4, while in section 5 the conditions for statistical equi-
librium are investigated. Finally, the generating functions of the steady state
probabilities are obtained in section 6 and used to obtain, in section 7, some
important measures of the system performance.

2 The Model

Consider a single server queue accepting two types of customers. The P; cus-
tomers (ordinary customers) arrive according to a Poisson distribution para-
meter A; and queued up in an ordinary gueue waiting to be served. The Py
customers (retrial customers) arrive according to a Poisson distribution para-
meter Ag and, if find the server unavailable, they leave the system and join
a retrial box from where they retry independently, after an exponential time
parameter «, to find a position for service.

To start serving the Pjcustomers waiting in the queue or the P, customer
who found a position for service, the server needs a start up period S;, i =
1,2 (different for each type of customers), distributed according to a general
distribution with distribution function (D.F.) 5;(z), probability density function
(p.d.f) si(z) and finite mean value 5;, i = 1,2 respectively. Moreover the
server, upon finishing all tasks in the queue and in the service area (the retrial
box is not necessarily empty at this point), operates a close down period C
arbitrarily distributed with D.F. C(z), p.df. c(z) and finite mean & During
the close down period no retrial customer can access the service facility, while
if a Py customer arrives during C, the server returns to the serving mode and
starts serving P; customers but now with a different start up period S5 with



D.F. S3(z), p.df. s3(z) and finite mean 53. This can be explained by the fact
that after an incomplete close down period it is natural for the server to need a
different start up time to transfer again the system in the serving mode.

When a close down period is successfully completed the server departs for a
single vacation V' which length is arbitrarily distributed with D.F. V(z), p.d.f.
v(z), and finite mean ¥. If, in the end of the vacation, there are P; customers
waiting in the queue the server operates an S period etc., while if the queue is
empty he remains idle waiting for the first customer, from outside or from the
retrial box, to start working again.

It is natural for the ordinary P; customers to have a kind of priority over the
retrial Ps customers. Thus, if a P; customer arrives during the start up time of
a Py customer then this start up period is interrupted and a S; time followed by
a busy period of P} customers and a close down period begins. The interrupted
Py customer does not return to the retrial box but he restarts his start up time
from the beginning when this close down period of P; customers is finished. On
the other hand the arrival of a P} customer cannot interrupt the service time of
a Py customer. In the later case, the service of the Py customer is completed
and in the sequel the server starts working (start up plus busy period) on the
P; customers.

Finally, the service times of both type of customers are arbitrarily distributed
with D.F. B;(z), p.d.f. b;(z) and finite mean value b; for i = 1,2 respectively,
while all random variables defined above are assumed to be independent.

3 Preliminary Results

We agree from here on to denote in general by a*(s) the Laplace Transform
(L.T.) of any function a(t). Let us denote now by B®) the duration of a busy
period of P; customers which starts with ¢ = 1,2,... P; customers, and let
N(B™) be the number of Py customers arrive during 8. Define

g (t)dt = Prft < B® <t +dt, N(BY) =m)].

Then it is known from Langaris & Katsaros [6] that
0ty [ )
=0

where z(s, z2) is the root in z; with the smallest absolute value of the equation
21— b’f(s i )11{1 o Zl) + Ag{l et 22)) =

Let now denote by R the time interval from the beginning of a close down
period until this period be successfully completed and let N () be the number
of Py customers arriving during R. If we define

o o0 .
ri(t)dt =Prt < R<t+dt, N(R)=j], 71*(s,2)= fu e st er(t)zédt,
=0



and denote

(ﬁ) = g~ Mt (Alt)ief,\zt (AQt)m
! m!

Pim 3 0(3,21,22}=3+)\1(1—21)+/\2(1“32},

then it is clear that

i) = poj(t)e(t) + { M Yoi—o por(t)[1 — C(t)]}
{20 X0l pim(®) s3(8)} + I8 ™ g8V (@) # 1 kmmit(8),

(1)
and so finally
c*(a(s, 0, z
T*(S,22)= ( ( 2)) —,
1— M(s,z(s, z3), 22)
with " il Bl
—c*(a(s,0,z
M (s, z1,22) = Aizs5(als, 21, 22) )——m%—2 (2)

a(s, O: Z'z)
Let now @) be the time interval from the beginning of a vacation period until

the epoch at which the server becomes idle, and let N (Q) the number of P,
customers arrive during @). If we define

q; (t)dt == Pl’[t < Q <i+ dta A‘Y(Q) = -7]1 q*(33z2) = j; e—-St Z‘b(t}zgdts
j=0

then
i(t) = pos(B)u(t) + 2, Thoo Pik(B)0(E) * 520 S5 prm(#)s1 (2) 5
ey et e T T 1, () i )

and so
v*(a(s, 0, 22))
1— [v*(a(s, 21,22)) —v*(a(s,0, 22)]s7(a(s, 21,22))r*(s,22)

g (s,22) = (4)

Note here that if we denote

¢ (a(s,0,22))v" (a(s,0,22))
1—-M(s,51,52)—c*(a(s,0,52))[v" (a(s, 21,22))—v" (a(s,0,22)]5] (a(s, =1,%2))°

6(3, 21, ,?,“2) =

e (5,25, 2), 22
e(s, z(s, z9), 2o
- —— : (6)
T*(s, z2)
If finally p, = E(N(Q)) then by differentiating (4) with respect to z; we arrive
at p, = p,/(1 — A1b;) where

q*(s, z2) =

Py = m{(l+)\1§3)(1_C*()\l})(l_v*()\l))

FAe(M)(F+5(1 - 0" (M)}



We are now ready to define the ” service completion time” of a P; customer
as the time W, elapsed from the epoch at which this customer succeed to find a
position for service until the time the server departs for a vacation. Let N(Ws)
the number of new Pp customers that arrive during Ws and

W;(8)dt = Prt < Wy < t+dt, N(Wa) = 4], @*(s,2) =f e_stzwj(t)zgdt,
4] i=0

Then by writing for w;(t) a similar expression as in (1) and (3) and taking
Laplace transforms we arrive easily at

L(s, z(s, 22), 22)r* (s, 22) (7)

il e oy e e e

where
L(s,z1,22) = s3(a(s,0,22)){b3(a(s,0, z2)) + s3(als, z1, 22))[b3(als, 21, 22))

—b3(a(s,0, 22))|},

K(s, 21, 22) = )\1213I(a(5s51,2‘2)};§m#-
y (8)
If finally p, = E(N(W?2)) then by differentiating (7) with respect to 2, we arrive

at p, = ﬁc/(l - Albl)

_ A2 _ 4
p. = m{(l“FAlSs)(l*C(h))

+e (A)[(1 + M51)(1 = s5(M)) + Arsz(An) (b2 + 52 (1 = 85 (M)}

The "generalized service completion time ” of a P customer, Ws say, can be

defined as the time elapsed from the epoch at which this customer succeed to
find a position for service until the time the server is again idle and so free to
accept the next customer (from outside or from the retrial box). Let N(Ws)
the number of new Ps customers that arrive during Ws and

wj(t)dt = Prlt < Wy < t+dt, N(Wa) = 3], w*(s,2) = f ety " w;(t)hdt,
0 i
3=0

then it is clear that
w*(5= z9) = W*(s, 22)q" (s, 22),
and from (6), (7)

L(s,z(s,22), z2)e(s, z(s, 22), #2)
1—-K(s,z(s,z2), z2)7%(8,22) ' ®)

w*(s, z2) =

while, by suitable differentiations, the mean number of P, customers arriving
during Wy and the duration of Wy are given by

_u+n‘_) l_p
py = E(N(W>)) = {’_W B(Wy) = =5 Px. (10)



We define finally the ”generalized busy period” of P, customers as the time
interval, Wj say, from the epoch at which a P} customer arrives in an idle server
until the epoch at which the server remains idle again. If as before N(W}) is
the number of new P, customers arrive during W, and

oo o i
d;(t)dt = Prlt < Wi < tdt, N(W1) =), d*(s, 25) = f et 3 d; () ddt,
0 -

then

s j-m j=m-1

4(6) =3 > pim®si(t)x Y g W) D0 ralt) * gomrok(t),

i=0 m=0 =0 k=0
and so

d*(s, z2) = x(s, z2)s7(a(s, z(s, 22), 22))r* (5, 22)q" (s, 22). (11)

If finally we differentiate (11), with respect to z and s, we obtain
BVOV) = paf(L- 3B, By = ZEIL )

where
_ Ag

Pa = _—«\w*(h)c’*(/\l){(H A183) (1= c* (A1) + ¢ (A)[M (T + 51) + A biv* (M)}

4 Time Dependent Analysis

Let N;(t) i = 1,2 be the number of P; customers in the system at time ¢ and
denote by

b; if a P; customer in serviceatt i=1,2
s; if a P, customer in start upatt i=1,2
s3 if a Py customer in special start up at t
¢ if the server on close down at t

v if the server on vacation at t

id if the server idle at t

Il

3"

and

v — 1  an interrupted Py customer waits at t
£= 0 nointerrupted Py customer waits at t

Let us denote also by X(t) the elapsed duration at time t of any random
variable X . Define

P8 (2, t)de = Pr[Ny (8) = 4, Na(2) = 5, & = be, s = 0,z < By(t) < o + da], k=1,2
P8 (2, t)dz = Pr{Ny () = 4, Na(t) = j,& = siyue = 0,z < By (t) Sz +dz], k=1,2,3

Pl (z,8)dz = Pr[Ny(t) = i, Na(t) = ,€, = e,u, = 0,2 < C(2) < =+ da,
P8 (2, t)dz = Pr[N1(2) =4, Na() = j,&, = v,ue = 0,2 < V(£) < z + dal,
g5 (£) = Pr[N1(£) = 0, Na(t) = j, &, = id, u, = 0],



P(‘E‘)(s,zl,zg,m) = ] ‘“ZZp(E) (z,¢ zlsjdt

z—O_g-i]
= (id)
Q(s,m) = /0 S g (1)t
=0

and denote by 33;(5‘) (z,t), ﬁ(ﬁf){s, z1, 22, z) the corresponding quantities for u; =

1.Then by connecting as usual the probabilities at ¢ and £ + d?, forming Laplace
Transforms and generating functions and solving the simple differential equa-
tions we arrive for z > 0 at

P(bk)(sa 21, 22, $} = P(bk)(sazlsz% O)(l = Bk('r)) exp[_a(s7z1: 32)3;]) k= 1: 2
P(x) (8,21, 29,2) = P(sk)(s, 21, 22,0)(1 — Si(z)) exp[—als, z1, z2)x], k=1,2,3
P(C)(s, 0,z3,2) = P(C)(S,O, 22,0)(1 — C(z)) exp[—a(s, 0, z2)z],

P(u){s! 21, %9, Z) = P(u) (Sl 0: 22, 0)(1 il V(GJ}) exp[—a(s, 21, 2’2)’1‘],
(13)

while
ﬁ(bl)(s, z1,%2,T) = 13(""){5, 21, 22,0)(1 — By (xz)) exp[—a(s, 21, 22)z],
ﬁ(sk}(s, Z1,%2,%) = ﬁ(sk)(s, z1,22,0)(1 — Sk(z)) exp[—a(s, z1, z2)z]), k=1,3

ﬁ(c)(s,{), z9,T) = 15(")(3, 0, z2,0)(1 — C(=)) exp[—a(s, 0, z2)z],
(14)
and for the idle mode

azz&flz;@*(sa 2) + (s + Q" (s, 22) = 1+ P)(s,0, 22,0)v" (a(s,0, 22)). (1)

In a similar way we obtain, after algebraic manipulations, for the boundary
conditions (z = 0),
[z1 — b3 (als, 21, 22))]P®1) (s, 21, 29,0) = P1) (s, 21, 22, 0)s%(a(s, 21, 22))

+P(33)(5!31=z250)3§(a(3:z17z2)) *P(b‘)(ssoazzyo)bf(a(ssﬁ), z2))
(16)
[:""1 - bI(O‘(sa 21, 52))]P(b1)(51 21, 3230) = P(sl)(sa 1, 32:0)5;(03(3: 2192'2))

+15(53)(3, 21, 22,0)s5(a(s, 21, 22)) — ﬁ(bl)(s, 0, z2,0)b% (a(s, 0, 22)),

(17)
*5(51)(333112:2’ =Mz ‘*_‘?(WP(SE)(S,O,ZQ,O),
PUa)(s, 21, 25,0) = Ay 2y LS (20002)) p(e (5,0, 24, 0), (18)

ﬁ(sa}(81 21y 22, 0) = /\l"‘ = {(sags 23~2))P(C) ('91 O: 22, 0))



P (5,0, 25,0) = P()(s,0, z2,0)c*(a(s, 0, 22)),
Bl (5,0, 25,0) = Plb1)(s,0, 22, 0)b% (a(s, 0, 22)), (19)
P2)(5,0, 25,0) = P(2)(s,0, 22,0)s3(a(s, 0, 22)),
while finally
P()(s,0,25,0) = P®1)(s,0, 23, 0)b% (a(s, 0, z2) + P®2) (5,0, 22, 0)b3(a(s, 0, z2)),
P1) (s, 29, 25,0) = Mz1Q* (s, 22) + PM(s,0, 22, 0)[v* (a(s, 21, 22))
—v*(a(s, 0, 2))] + P2)(5,0, 22, 0) [b5 (a(s, 21, 22)) — b3 (a(s, 0, 22))],

P(s2)(5,0, 29,0) = G%Q*(S, 23) + XA2Q* (s, 22) + Pl (5,0, 23, 0)c* (a(s, 0, 22)).
(20)
Let us define now

T(s,21,22) =1— K(s,21,2)c" (a(s,0, 22)) — M(s, 21, 29),

where the functions K and M have been defined in (8) and (2) respectively.
Then by substituting from (18), (20) and (19) to {17) we arrive at

= K(s,z1,= *(5,52)=T(5,21,22) P (5,0,25,0
P(bl)(s,zl,zz,()) = (s,21,%2) Ql.‘ff—;;)(a(s(‘zl,l.:g)z)) (5,0,22,0)

with d
Qi(s, 22) = GEQ*(Sa z2) + 2Q" (s, 22),
and as the zero of the denominator in |z1| < 1, z(s, 22) say, must be zero of the
numerator too, we obtain
- K(s,x(s,z22), 22)
ple ,0, z B i Vo e ol P it
(S 2,0) T(S,ﬂ?(S,ZQ),ZQ)

—

R(s,z1,27)

z — bi(a(s, 21, 22))

QI(Sa '3"2) H (21)

B0, 21,22,0) = Qi ), @)

with

T(S: 21, 32)

R(s, 21,20) = K(s, 21, 22) — K (s,2(s, 2), 52)m-
Moreover from (18) and (20)

M(s,21,29)K(s,z(s, 29), 22)
T(s,z(s, z2), z2)s%(als, 21, 22))

B2 (5,21, 2,0) = Qi(s: 22), (28]
Pl2)(5,0,2,0) = R(s, 23) Q%(s, 22), (24)

with

K(s,z(s, 22), 22)

R(s, z2) = 1+c*(a(s,0, 22)) T(s,z(s, z2), z2)



Now from (15)
. QE(Su 5‘2) ~1

P z =
010200 = e ae,0,2)) )
with d
Q;(S, z2) = IIZ2EQ*(S, 22} + (S iy )\)Q*(S, 52)
and substituting in (19)
3(s,2) — 1
P(c) 5 - QQ(S-, az) ) 2
4:0:22:0) = 50500, 2)er (@(e,0,)) e
From (18), (19) and (24)
P (s, 21, 23,0) = 2 R(s, 29) Q3(s, %),
P®2)(5,0,2,0) = s3(a(s,0, 22)) R(s,z) Qi (s, 2a), (27)

st I _ _M(siz,= Q5(s,22)—1
P (s,21,2,0) = ey samol o

Substituting finally from (20) and (23) in (16) and denoting

hi(s,z1,22) = aL(s, z1, z2) R(s, z2) — aza/e(s, z1, 22),

h’z(sl 13 22) = )\1215;(0(5,2’1,22)) + A2L(‘91 213 32) R(S1 52) - (5 + A)/E(.S‘, %1, .2.’2),
(28)

we arrive at

ha(s,21,52) 35 Q" (s,22)4+ ha(s,21,22)Q" (s,22)]+1/ e(s,21,52)

b —— e dz
PO (s, 21,29,0) = BT Ceey) '
(29)
and using the zero of the denominator in the unit disk we obtain
d
a(zs — D(s, Zz})EQ*(S, z2) + F(s,2)Q%(s,22) = 1, (30)

where now
D(s,z9) = L(s,z(s,22), z2) R(s, z)e(s, z(s, z2), 22),
F(s,22) = s+ X — AMx(s, z2)s7(a(s, z(s, z2), z2))e(s, 2(s, z2), 22) — A2 D(s, z2)
=5+ M (1 —d*(s,22)) + Aol — D(s, 22)).
(31)

We have to state here the following theorem
Theorem 1 For (i) Re(s) > 0, lw| £ 1 (it) Re(s) = 0,|w| < 1 and (iii)
Re(s) > 0,|w| <1 and ~
p=XMb1+p,+5,>1 (32)

the equation
zo —wD(s,z0) =0 (33)



has one and only one root, 29 = ¢(s,w) say, inside the region |zq| < 1. Specifi-
cally for s =0 and w = 1, ¢(0,1) is the smallest positive real root of (38) with
$(0,1) <1ifp>1and ¢(0,1) =1 forp<1.

Proof: Comparing D(s, z) in the first of (31) with the generating function
w*(s, z2) in (9) of section 3 one realizes easily that

oo oc A
D(s,z2) = w*(s,22) = f et ij(t)zﬁdta

0 =0

i.e. D(s,z22) is in fact the Laplace transform of a generating function.

Thus for the closed contour |z3] = 1—¢ (¢ > 0 is a small number) and
under the assumptions (i) and (ii) we can always find a sufficiently small € > 0
such that

[wD(s, z2)| < |w| D(Re(s),1 —¢€) < 1—¢, (34)

while for Re(s) > 0, |w| < 1 we need in addition

d
—=D(0,1- €) |ezo< —1,

or p > 1 for the relation (34) to hold. A final reference to Rouche’s theorem
completes the first part of the proof.

Moreover for s = 0 and w = 1 the convex function D(0, z3) is a monotonically
increasing function of z3, for 0 < zp < 1, taking the values 0 < D(0,0) < 1 and
D(0,1) = 1 and so 0 < #(0,1) < 1 if p > 1, while for p < 1, ¢(0,1) becomes
equal to 1 and this completes the proof. O

Using the theorem above one can solve (see Falin & Fricker [7]) the differen-
tial equation (30) and obtain

. 1
F(.S‘, 252) ,

Q*(Sa 32) if = ¢(S, 1)1

Blat) 1 = F(s,z)

*(s,%22) = —_— ———  _dz}du, if = :
Cem= [ o ape e i aEe)
Thus the quantity Q*(s, z2) is known and so from the second of (20) and
(21)- (29) all generating functions are completely known. This completes the

time-dependent analysis of the model.

5 Stability Conditions

For a stochastic process (Y (t) ; ¢ > 0) we will say that it is stable, if its limiting
probabilities as ¢ — oo exist and form a distribution.

Consider now the points T}, in time at which, either a generalized busy period
of P customers, or a generalized completion time of a Py customer is finished,
i.e. the points at which the server becomes idle. If

0=Th<hh<Th<--,

10



is the sequence of these points in ascending order and define ¢, = Na(T}, +0),
then it is easy to understand that the stochastic process Z = ({,;;n > 0) isan
irreducible and aperiodic Markov chain. Then

Theorem 2 For p < 1 the Markov chain Z is positive recurrent.

Proof. = To prove the theorem, we will use the following criterion (see
Pakes [§]):

An wrreducible and aperiodic Markov chain (Y, ; n > 0), with

state space the nonnegative integers, is positive recurrent if |6x| < co
forallk =0,1,2,... and limsupd, < 0, where §; = E[Y,11 — Y, |

k—oo
Y, = K]
For the Markov chain Z of our model, let
B ()dt = Prlt < Ty — T, <t +dt, No(Tpt1) — No(T) = m| No(Ty) = k).
Then it is easy to see that for m =0,1,2, ...

him(t) = e~ (Ptratkajt dm(t) + Aoe~(Patdatka)t W (t)

+kae—(A1+A2+ku)t * Wy (t),
while for m = —1
hk,ﬁl(t) = kae~(A1+ratka)t *wg(t},

and so

= Ad* (s, 2) + dow* (s, z) + K2w*(s, 2)
st B 2 1 1 -] :
/0 e E km (D) zTdt = st e Lk ; (35)

m=—1

and by taking derivatives above with respect to z at the point (z=1,s5 =0) we
arrive at
5. _ ME(N(W1)) + X E(N(Wa)) + kalE(N(W2)) — 1]
k /\]_ + A2 = ka ’

T % T

where E(N(W1)), E(N(W2)) have been found in (10) and (12) respectively.

Thus for p < 1 we realize that |§g| is finite for all k& and also limsupd, =
k—oo

E(NW,))—-1= 1—% < 0, and the criterion is satisfied. O

Consider now the stochastic process

Z = {{(N.(t), No(t), &): 0t < o0}
where N;(¢), £, have been defined in section 4. Then

Theorem 3 For p < 1 the process Z is stable.

11



Proof: Consider the quantity
my=E(T| {;=k)
By taking derivatives in (35) with respect to s (at z = 1) we obtain

ME(W1) + M E(Wa) + kaE(W3) + 1
A1+ A2 +ka

mg =

andifgr k£ =0,1,2,... are the steady state probabilities of the positive recurrent
Markov chain Z then

a-m=Y_ gumy = E(Wa)+{1+M[E(W:) - E(W2) ]}Z s /\ e (36)

Now it is clear that there is always a finite integer £* such that

1 1
il = y
A+ X+ (k*—1)a A+ Ao+ k*a

and so
oo 9k _ k* -1 qk
Dok T Zk 0 e e e Zk ke T < Xok=0 NarRE
% 1
+ Zk k= 9k = Ek 0 N T (1.~ Z;mg gk) < 00

and so from (36) using (10), (12) we understand that q- m < cc.

Consider finally the irreducible aperiodic and positive recurrent Markov Re-
newal Process {Z, T} = {({,, Tn) : n = 0,1,2,..}. It is easy to see that
the stochastic process Z is a Semi-Regenerative Process with imbedded Markov
Renewal Process {Z, T} and as q - m < oo it is clear that Z is stable (Cinlar [9],
Theorem 6.12 p.347).

6 Steady State Probabilities

Suppose now that p < 1. Let

P (@) = Jim p0(z,8), o = lim ¢f (1), z)—z a5 Ve,
PG, b5, )= ZZP(E‘)(JT dd, P / PRI oo,
i=0 j=0

and denote by ﬁg‘)(z), 15(6*)(31,2,’2,3:), P&)(z, 25) the corresponding quanti-
ties for u; = 1. Then it is well known that

p,(jt (.'L'} n hm p(ft)( ): lim 5] E_Stpijt)( )dt:
0

§—

12



and

o
id . id : —st (id
o9 = Jim 20 = lims [ el g

P (21, 29) = PO (2, 25,0)[1 — b2 (a(0, 21, 22))])/a(0, 21, 22),
Per)(z1, 29) = P*) (2, 29,0) [1 — s%(a(0, 21, 22))]/a(0, 21, 22),
PE(0, z3) = P()(0, 22,0) [1 - c*(a(0, 21, 22))]/a(0, 0, 22),
POz, 20) = PO(0, 22,0) [1 — v*(a(0, 21, 22))]/a(0, 21, 22),

ﬁ(bl}(zl, Zo) = ﬁ(bl)(zl, 29,0) [1 — b3 (a(0, z1,22))]/a(0, 21, 22),
}5(3")(51,22) = ﬁ(sk)(zl, 20,0) [1 — sx(a(0, 21, 22))]/a(0, 21, 22),

P‘(C) (05 ZZ) = P'(c)([)! 22, D} [1 == C*(G(U, 21, 2"2))]/3(()’ 0, ’32)'

In a similar way we obtain for the boundary conditions

with

Q3 (20) = e

B0, z,0) =

15'{'51}(51, 29,0) =
16(53)(51,;:2,0) —
P(s2)(0, z5,0) =
P1) (21, 29,0) =

Pb2)(0, 25,0) =

PO)(0,2,0) = 5Bl

and so integrating with respect to z, multiplying by s and taking limits s — co
in (13), (14) we arrive at

k=1,2
k=123
(37)
k=1,3
(38)
Toaag ) i),
E(O,: - i
R el @1(%2);

M (0,21,52) K(0,5(0,22),22) f.
T(0,0(0r52),2)53 (@051 ,22) @1 (%2), (39)
R(0, z2) Q7 (),

K(0,z,= = $of =
SR R(0, 22) Qi(=2),

35('2’(0! 0,22)) R(0, 52) Q;(ZZ)a
(40)

.. Q3 (=
P(C) (01 2, 0) == @(O,D,:g)ﬂ)if(?z(o’ﬂ’:ﬂ) s

P(*3)(21,29,0) =

dz

M(0,31,22) Q3 (=)

Q" (2z2) + 220Q"(22),

2
s3(a(0,71,72)) v ((0,0,22))c*(a(0,0,52))*

Qp(2) = azzif—zcz*(zz) +2Q* (=)

PGI(21,29,0) = Mz Q*(z) + P)(0, 23, 0)[v*(a(0, 21, 22)) — v*(a(0,0, z2))]
+P®2)(0, 25,0)[b5(a(0, 21, 22)) — b3(a(0,0, 22))],

13
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h1(0, 21, 22) - Q*(= ho(0, 21, 20)Q* (=
PO (2, z5,0) = 1(0, 1 2),1_125262(1)(;-:: ;))1 2)@(2)]1 (42)

while the differential equation (30) becomes

a(z — D(0, zg))-c—g;Q*(zQ) + F(0,22)Q" () =0, (43)
with D(0, z2) = w*(0, z2). From (31)

F(0,22) = Ay (1 — d*(0, 22)) + Aa(1 — D(0, 25)) = AL — G(22)],

where
Eiu)e A1d*(0, z3) %;\)\gw*(l), 52).
Let now
() = =)

zo — w*(0,22)’

then for p < 1 the quantity zp — w*(0, zp) never becomes zero in |z| < 1 (
Theorem 1) and also

M5 205 45
lif ()= — A PAT 3 (Py +7P) _
2—1 1—p

Thus w{zp) is an analytic function in |z2| < 1 and a continuous one on the
boundary and so for any |z3| < 1 we can solve equation (43) and obtain

= === u
@)= Wen(-3 [ SoT-au,

Replacing finally @*(22) back in the generating functions and asking for the
total probabilities to sum to unity we arrive at

L= p
M) =—r
( 1—A1bl+%pd

and so the generating functions of the steady state probabilities are completely
known.

The following theorem shows that the condition p < 1 is also necessary for
a stable system.

Theorem 4 If the stochastic process Z is stable then p < 1.

Proof: Suppose that Z stable and p > 1. Then from theorem 1 the equation
zp —D(0,22) =0 has aroot 0 < ¢(0,1) < 1 and

F(0,6(0,1)) = A1(1—d™(0,$(0,1))) + A2(1 - D(0, (0, 1)) # 0.

14



By putting now ¢(0, 1) instead of z; in (43) we obtain
F(0,4(0,1))Q*(4(0,1)) = 0,

and so Q*(¢(0,1)) = Y¢\"”¢7(0,1) = 0 with 0 < ¢(0,1) < 1. Thus ¢ =
0 ¥V j and also from the generating functions in (37)- (42) it is clear that all
probabilities become zero. This of course contradicts to the hypothesis that the
system is stable.

Suppose finally that Z stable and p = 1. By taking derivatives with respect
to zo in (43) (at 2o = 1) we arrive (for p = 1) at

d
EF(0=22)|:2:1Q*(1) = —[ME(N(W1)) + M E(N(W2))]Q"(1) =0,

and so Q*(1) =3 qj-d = 0 and this again contradicts to the hypothesis that the
system is stable. O

7 Performance Measures

7.1 Probabilities of server state

In this section we will use formulas for the generating functions obtained previ-
ously, to derive expressions for the probabilities of server state. Thus by putting
z1 = Z = 1 into relations (37)-(42) we obtain easily

Plserver Idle] = P(¢=id)=Q*1) = = :\151+3vad

Pla P, customer in service] = P (& =0by)= Ab;

Pla P, customer in service] = P (£ =by) = Ay

P(server in Py start up] = P(&=5y)= T(il_)_sz.(il.).

Plserver in vacation] = Pt=v) = %_25

P[server in close down] = Ple=g= %\12'((;\11)) P f("'/\(?)l} + '\Zti\{‘ﬁ;(l}]
P[server in special start up] = P (€ =353) = M\5P (¢ =c¢)

Plserver in Py start up| = P=3s)= 51[%}-& — Aobl (A1) + Az%z;j?—;)]

7.2 Mean number of ordinary customers

For any p.d.f. a(t), let us denote now a® = f;c t?a(t)dt, i.e., denote by a®
its second moment about zero. By differentiating the generating functions with
respect to z; at the point z; = z3 = 1 we obtain the mean number of P,
customers, according to the server state, as following,

A o®

E(Ny; §=U):W

(A2 + 2Q7(1))

15



E(Ni;6=5) = MH[Q Q)+ (,\ ) (A2 +MQ™ (1)) + Aobo] + ;(2)
IR g 2SO+ )
E(Ni§ =by) = 22250
E(Nii¢ =b) = Tl)\—"l%b"?) (M3 /51 + A1 + 43)
where
= Sy [0 00 (us? - 23) 0 (s 420
A = Al(,\ls”+2§1)Q*(1}+{2&—)‘“‘f}1—§[(1—c*(A1))(A1§§2’+2g3)

+Aie” (M) (55 52 (1—v" (M) +250+ v(z))]
+,\1)\2(§§2) (1—b5 (A1) + 25152 +B£ ))

7.3 Mean number of retrial customers

To derive expressions for the mean number of customers in the retrial box we
need firstly to calculate the derivatives of some functions defined in previous
sections. Let

K 07 0,27 ) &
U(Oaﬂ?(O,ZQ) ,,2,'2) = ( IL‘( 2) 9

T(0,z(0,22), 22
QW = 3 Q" ()l = (LR,

. " 2 2) A=
Q (2).— -—! Q (ZZ}LZ_I = 2111{1\ I?a) [Angu} +A1P,(1 )Q (1)]1

=aQ"® +20°M,  Hy =aQ*® + (A +a)Q*®
(2)

where p$? and p( ) are given below in (44) and (45). For any function f*(z»)
denote f*) = d:g f*(22)|.,—, and

. - 1)
) U_U(o,l,l}fc*(,\l)s;()u)’

o) — [ 1=1"(a(0,0,22)) _ _1—f(x
o ()= (BLERED), o =g (= 50,
1 d M A2 () FAa (=1 (A
o) = ope ()], oy = 22L 0T 00)
2 2 =AINFP 00)4222 (A a2 F O (g )+ xa (1= F7 (A1)
o) = 2z op () ey = —2 2 ——— )
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while for any function w (0, z (0, ) , 22) denote W) = % w (0, (0, 22} , 22)|.,—; -Then

K(l} = AQS*(I) (/\1) + - ,\ b: 0'52‘ (1 + )\151) y

MO = e ® () + o

T—A.b; 1+ M83),

(
T = —KMe* (A1) + Adac™® () o3 — MW,
U@ = (KW (A)s(A) — TWA 043}/ (e (M)s5(M))?,

20 — Ao I:Al gor (1+A155)+21¢" (A1) (45100 Uu-)]
- c* (A1 )v* (A1) ’
L= ﬁ)\gsz(l) ()\1) + ﬁzﬁl—sﬁ (Al) (52 4+ 51 Jbﬁ) 5

Az (A1) Ay aus

_ _d . o 3
R = R(0,2)],,0 = ¢ () OO ~ s

where the functions K, M, T, e, L, R, have been defined in sections 3 and 4.
Using the above quantities we have for the retrial customers the following results.

AP S e+ M@ (@), 5 O ()
Blee=n =y vy 0zt o)
() A2 )
E(Nai{ = s2) = 055 [Mo R + (Al)] 5 () %2
2
B (Ngj € = by) = bl (M) (AR 4 —22 ) — /\233(1 (x ‘)}+’\—§E(2)
2;& = 02) = 0g85 (A1) (A2 5500 5 00) 5y
E(No; =c) =g {[ UMY + H,U 1 H. Qa+0Q7(1)) 4
(Noi& =) = oo {DeU™ + B + ooy B2 + ey 2

x (e*® (M) v* (M) +¢* (M) o*® A} + oD AU + jf(“;j;ﬁ‘; 2,

E (Ng;f = 53} = )\1{§3E (Ng;ﬁ = C) + :}Eggz)P(f = C)}

E(Npsé=s1,u=1)= ’\151[ S3(M }Jﬁ-) + s (2 RM + s {A ))] + 2: (’\).]1)—(2)‘73%

E(Ngié=s; ,u=0)= 22002000 _ ) gy )] 4 5 { 2t0Q Wy 1

v* (A1) v™ (A1)
Ty 2V A ) *
o Q)]+ 0Q°W + BRSH; + 22850 O + Qe (1)
Fh10w3 (55 (0n) Qo RO + sy — 22000 4 52(F, 4 (3))).
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Except for the quantities introduced before we need also the second derivatives
to proceed to E (Na; & = b;). Thus

Semy Y(21) _ 92 225x(2)
@ — QW(1+A131)+WJSE A3s5 7 (M)

/\20'

+(1_,\'17L)'[(A1§§2}+2§1) 1 ,\ e (1+’\151)]

’\2

~(2) A.ﬂc*(l)(,\ ) g 2 x(2
M) = 23y (L4 Mass) + 2—(5’%—5]5%- —23¢*@ (A)

+(l—*?ﬁ—75[{/\1§§2) +25;) + 1“‘§ = (14 \153)),

s . a3 < 25 (1) e
2 = ,\'38 (2) (3 )_ 2 1(»\;1)!5?2+ 1) +2/\ 251(s3 (Al)bl()‘;z':lsz(h]b (M)

+(? sxl(;:)-‘- [1 o g (b2 + MF106;) + (B8 + M5Pays + 25:5)),

A(2) _ - Ap (&M (A1)w* (Ag)+e* (A)o* m(xl)} .
= J+2( S0 ) &t

where

J o= {4 2@ (Al)_zxac-mmwm)+”%El(c"”(mv*(A1>+c*<mv*“‘<*ﬂ)+

1- )\151 1-A1hy
2 o )
*2“—‘?)[*@’,\1%* + 25104 5D + 22 (54 5 0000)]}/ [e* (M) v* (A1)]
(1=X101)2 1= b1
T = —K@c* (M) + 200" (A1) KD — A2e*®) (X)) Mogy — MO,
22) K@ _opMpg) _p@y
U( ) = c*(A1)s3(A1)
Let now for any function w (0, 21, z3) denote W} = a’i-n w (0,1, 22)|,,—; - Then
I-{'(l) = }\1 [)\2.?1055 +0'(1)j| ’ }:{(2) = /\ [ (2) + )\255_ ) 5 +2A2§10‘£?] 3
MO = [Ag&gac. -- 0'( )} . M@ =) {afﬁ) %s:gz)a'c + 2)\2530'8)] y
TW = —KEWe* (A1) +roc*® (M) Magy — MO,
T® = —K®c (M) + 20 ® () KD — A2e*® (M) Mogs — M),
5 i = . . .
R = ——-R(O, 1, 22)|sgeet = TV 4 *(A)s300) 0T — BED,
2
R = —i‘l—uR(o 1, 23)|spm1 = TU 4+ 2TWTW 4 *(X))s5(0)TE — K3,
and finally

H 5o BD

B((Noi € =by,u=1)) = 2B +
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For the computation of E ((Ng;& = by,u =0)) we need finally the deriva-
tives, at the point 23 = 1, of the functions L(0, 1, z2), h;(0,1, z3), i=1,2, and
e1(0,1,z2) = 1/e(0,1, 20) defined in (8), (28) and (5) respectively. Thus

L) = —)\26‘;(1) (A1) + Aass (A1) (52 + ElAlﬂ'b;):
L® = 23s3® (1) + 22351 (5™ () b5 (M) + 53 (M) B3 (M)
+X3s5 (A1) B M1oes + 28182 + B57) — 22255 () (B2 + 1),

R® = ding(o, 22)|spm1 = A2 @ (A1) U — 2290 (M) TD + ¢ (3) TP,

é(1) g [A;c’vs(1+A1§3)+A1c‘(A1)(ﬁ+§1A1aut}]
- A1 e (A1) (Ar) ’

M g)v" (A)+e* (M) M ()] .1 % 2132
&2 gyl e ‘]eg)—(l—Albl)JqL(,_—;;%;

b1(1=21b1)(oes (M55 +285)+e" A1) EP A oy v 4251 54+52)
™ (ApvT (A1)

[

+E£2)(acv (1+A153)+c*(,\1)(a+xlov-§1))]
c* (A])v‘ (xy)

and
A = a{E@/s5(01) + 2LO RO 4 s5(2) RO — 28V — &Py,
RSP = A A28 — 2,8 + 230
A = o{LM /s3() + s3(0)RD — 1 - &V},
AS = Magmy + 2250 — y e,
Then finally
E(Npg=bu=0)= -z {2k 3208 [apl + 007 ()] +
E§2)Q*(1)+ (R?) +25§1)) Q*a(l) (A1.«3¢+1\2—(§|c+?3u))},
with
Agoes (14 /\1§3)
Pro— s e
(1= Atby) e* (M)
(2) _ 22 e BN +ME) +et (A)aee] | Mo (M55 +28) 2, MABPp_
= A e ) TGty T2t (1=25)"
2 A25(2) _ Ao (Br1+51) . 2 (2 = .
oD = oy (L Xa1) + 2_(21(_;1;:)6(1} + ok (3 + 95,5, + @),
: ) ) s : o
P = hg{ LD+ K@ 4 2(EWe® + RWp ) + 53 (M) 6@ + Nyoag pt?

Fsy [Mocs (142183)+c" (A1) (1421 51))

(1-2181)er (1) 32

+222p, {55 (A1) +
(45)
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8 Conclusions

In this paper a queuing model with two kind of customers, ordinary and retrial
customers, is studied. To start serving both type of customers, the server needs
a start up time, while when there are no customers waiting service, the server
performs a close down period and in the sequel he departs for a single vaca-
tion. Upon discovering a Markov Renewal Process at particular time epochs,
we describe our system as a Semi Regenerating Process and use the theory of
Markov Renewal Processes to derive conditions for the system stability. More-
over, using the supplementary variable technique, we obtain expressions for the
generating functions of the system state probabilities, both in a transient and
in a steady state, and use them to derive expressions for the mean number of
customers in the system, and the proportion of time the server remains in a
particular stage (idle, busy, in start up, in close down, in vacation). Although
the model is quite general containing a large number of arbitrarily distributed
random variables, the obtained expressions are easily computable and can be
directly used to produce numerical results and to compare system performance,
under different values of the parameters.
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